

 ADF Code Corner

001. How to Access Attributes of a Declarative

Component from a Managed Bean

Abstract:

In an earlier how-to document I explained how to

build and work with declarative components in ADF

such that it displays data passed from the containing

page. As you would have guessed to this time

already, there are more use cases to cover for

declarative components. The use case in this article

describes how to access an attribute within a

declarative component from a managed bean that is

part of it. For example, to write a generic component

that allows the containing page to pass in e.g. a

download URL to process, the attribute of the

declarative component doesn't need to be bound to a

UI component. This however means that developers

need to find a way to access the hidden attribute

programmatically - and of course there is.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
26-JUN-2008

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How to Access Attributes of a Declarative Component
from a Managed Bean

 2

Introduction
Declarative components in ADF allow ADF Faces developers to build new composite ADF Faces

UI components out of existing components. Oracle JDeveloper 11 then creates all the tag library

files and deployment artifacts that are needed to re-use this component in other web projects. To

communicate with the outer world, declarative components can have attributes and method

references exposed as properties to the containing page

Solution

When you develop a declarative component, you define the attributes and attribute's Java type that should

be exposed by the declarative component.

The declarative component that I built for this how-to document contains a command button that, when

pressed, prints the value of the hidden attribute "userInput" to the console.

The page source of the component looks as follows.

<?xml version='1.0' encoding='windows-1252'?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"

 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">

 <jsp:directive.page contentType="text/html;charset=windows-1252"/>

 <af:componentDef var="attrs" componentVar="component">

 <af:commandButton text="Press Me"

 actionListener="#{DeclarativeComponentHelper.onButtonPressed}"/>

 <af:xmlContent>

 <component

 xmlns="http://xmlns.oracle.com/adf/faces/rich/component">

 <display-name>ButtonAccessToAttribute</display-name>

 <attribute>

 <attribute-name>userInput</attribute-name>

 <attribute-class>java.lang.String</attribute-class>

 <required>true</required>

 </attribute>

 <component-extension>

 <component-tag-namespace>component</component-tag-namespace>

 <component-taglib-uri>/custom/buttons</component-taglib-uri>

 </component-extension>

 </component>

 </af:xmlContent>

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How to Access Attributes of a Declarative Component
from a Managed Bean

 3

 </af:componentDef>

</jsp:root>

Note the af:componentDef element has two attributes defined var="attrs" and componentVar=

"component". The "attrs" string is what you use to reference a declarative component from Expression

Language on a visual UI component: ${attrs.firstName}for example references the firstName attribute of

a declarative component.

The "component" value however grants you access top the declarative component as a whole and is what

we will use to access and read from a hidden attribute. While you also could use the "attrs" attribute to

access the attribute, using the more generic "component" handle is less code to write if there is more than

one attribute to interact with.

In the above example, the hidden attribute is "userInput", which is of type String. While this attribute is

not hidden from the containing page, it is not displayed on the declarative component UI - thus hidden.

The declarative component is deployed together with a faces-config.xml file that allows you to create and

configure a managed bean. In this example, the managed bean is named "DeclarativeComponentHelper"

and contains an ActionListener method,which is referenced from the commandButton

<af:commandButton text="Press Me"

actionListener="#{DeclarativeComponentHelper.onButtonPressed}"/>

The managed bean code looks as follows:

 1 package adf.sample;

 2

 3

 4 import javax.el.ELContext;

 5 import javax.el.ExpressionFactory;

 6 import javax.el.ValueExpression;

 7

 8 import javax.faces.context.FacesContext;

 9 import javax.faces.event.ActionEvent;

10

11 import oracle.adf.view.rich.component.fragment.

 UIXDeclarativeComponent;

12

13

14 public class DeclarativeComponentHelper {

15 public DeclarativeComponentHelper() {

16 }

17

18 public void onButtonPressed(ActionEvent actionEvent) {

19 UIXDeclarativeComponent _this = (UIXDeclarativeComponent)

 getValueObject("#{component}",UIXDeclarativeComponent .class);

20

21 String s = (String)_this.getAttributes().get("userInput");

22 System.out.println("The provided value was: "+s);

23 }

24

25 private Object getValueObject(String expr, Class returnType){

26 FacesContext fc = FacesContext.getCurrentInstance();

27 ELContext elctx = fc.getELContext();

28 ExpressionFactory elFactory =

 fc.getApplication().getExpressionFactory();

ADF CODE CORNER
How to Access Attributes of a Declarative Component
from a Managed Bean

 4

29 ValueExpression valueExpr =

 elFactory.createValueExpression(elctx,expr,returnType);

30 return valueExpr.getValue(elctx);

31 }

32 }

As mentioned before, the bean prints the content of the attribute to the console. In Oracle JDeveloper,

the console is the message window. The two lines of code that access the attribute value are

19 UIXDeclarativeComponent _this = (UIXDeclarativeComponent)

 getValueObject("#{component}",UIXDeclarativeComponent .class);

20

21 String s = (String)_this.getAttributes().get("userInput");

All declarative components are subclasses of UIXDeclarativeComponent, so that it isn't needed to

know the exact class name of the new declarative component to type cast the object.

The UIXDeclarativeComponent contains a method getAttributes() that returns a HashMap of all

attributes defined for a given component. Thus, to access the "userInput" attribute, the managed bean

uses a call to get("userInput").

As mentioned earlier, the declarative component itself is accessible through the "component" string,

which can be used in a JSF 1.2 value expression, as shown in the getValueObject() method above.

Running the sample, the following screen is displayed for you to play with

Type a value into the input text field and press the "Set Value to Pass" button to write the information

into the ProcessScope. Pressing the "Press Me" button of the declarative component then reads it from

there for printing to the console.

ADF CODE CORNER
How to Access Attributes of a Declarative Component
from a Managed Bean

 5

Download

You can download the Oracle JDeveloper workspace from the ADF Code Corner site:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

The workspace contains two projects, one for the custom declarative component and one for testing.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

